The influence of tensile stress on inductively coupled piezoceramic sensors embedded in fibre-reinforced plastics

Author:

Chilles James S1,Croxford Anthony1ORCID,Bond Ian P1

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University of Bristol, Bristol, UK

Abstract

This article demonstrates that embedded piezoelectric sensors can survive loads much higher than predicted by their material properties. It shows the potential for piezoceramic sensors to estimate structural loads when embedded in composites. To show this, embedded sensors were subjected to stresses and strains which were significantly greater than the recommended operating limits of their piezoceramic constituents. A novel data acquisition method enabled ultrasonic guided wave measurements to be recorded wirelessly from the embedded transducers, key to minimising the impact of embedded transducers. The data recorded by the piezoceramic transducers exhibited a reversible load dependence, with the measurements returning to the stress-free values upon removal of the applied load. The guided wave measurements recorded by transducers embedded in glass fibre–reinforced composites showed no degradation after being subjected to tensile strains of 1.07%. When embedded in a carbon fibre–reinforced plastic sample which was loaded to failure, the transducers remained operational; however, sensor performance was shown to be degraded after being subjected to tensile stresses as high as 606 MPa. This offers the potential to build sensors to characterise overload in a component.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3