Fiber Optic Sensing for Monitoring Corrosion-Induced Damage

Author:

Maalej M.1,Ahmed S.F.U.1,Kuang K.S.C.1,Paramasivam P.1

Affiliation:

1. Department of Civil Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576

Abstract

This paper reports the feasibility of using embedded Fabry–Pé rot fiber optic sensors to detect and monitor the propagation of cracks and delamination within concrete beams induced by corrosion of the reinforcing bars. In this research, four series of reinforced concrete beams were subjected to varying degrees of corrosion-induced damage by modifying the composition of the concrete mix and subjecting all specimens to the same accelerated corrosion environment. The concept employed in this study involves embedding the Fabry–Pé rot sensor between two reinforcing bars to measure the transverse tensile strains associated with the longitudinal crack along the reinforcing bars (and in severe cases, delamination of the concrete beam) resulting from the radial expansion of the corroding rebars. Excellent correlation was obtained between the Fabry–Pé rot strain data and the amount of steel loss resulting from accelerated corrosion. In addition, the optical sensor strain readings and the reductions in the load-carrying and deflection capacities were also observed to exhibit strong positive correlation highlighting the potential of the optical sensor to monitor the progression of the rebar damage and the loss of structural integrity of the beams resulting from the extensive corrosion. The technique used in this study demonstrates the possibility of detecting corrosion-induced damage in reinforced concrete structures, particularly those where visual inspection is not possible.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3