Damage Identification in Plate-like Structures using Bending Moment Response Power Spectral Density

Author:

Bayissa W. L.1,Haritos N.2

Affiliation:

1. Department of Civil and Environmental Engineering, The University of Melbourne Grattan St, Parkville, Victoria 3010, Australia;

2. Department of Civil and Environmental Engineering, The University of Melbourne Grattan St, Parkville, Victoria 3010, Australia

Abstract

In this article, a new damage-sensitive parameter based on bending moment response power spectral density (MSD) is presented for damage identification in two-dimensional plate-like structures. The total energy or the average output power under the bending MSD graph quantified by the zero order moment of the response spectral density, known as mean square value (MSV), is implemented as a principal response parameter. Damage indices (DIs) derived from MSV, namely relative changes in MSV, mean square value curvature (MSVC), normalized damage index, and relative root mean square error (RRMSE) are then used to detect and localize structural damage. The effectiveness of this approach is illustrated by comparing the results with those obtained from existing and well-established techniques, namely relative changes in natural frequencies, modal flexibilities, uniform load surfaces, and changes in curvatures, such as mode shape curvatures, modal flexibility curvatures, and uniform load surface curvatures. The significant advantage of the proposed technique is that both input–output and output-only damage identification problems can be treated. For the latter condition, the only assumption made is that the forcing function is stationary, ergodic white noise. The methods are illustrated on a simply supported RC rectangular plate subjected to simulated damage cases. Artificial damage simulating local stiffness degradation is introduced to the plate in terms of the material modulus at selected locations in the finite element (FE) model. The modal properties obtained from FE-based modal analyses of this plate for different damage condition states are used to generate the bending moment frequency response functions and MSD at simulated measurement grid points. Subsequently, MSV is computed for undamaged and damaged states from which the appropriate damage indices are obtained. The DIs obtained using different algorithms are used to identify and localize both single and multiple damage conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3