Maximum negative entropy deconvolution and its application to bearing condition monitoring

Author:

Zhou Zewen1ORCID,Chen Bingyan2ORCID,Huang Baoshan3,Zhang Weihua2,Gu Fengshou1,Ball Andrew D1,Gong Xue4

Affiliation:

1. Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, UK

2. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

3. School of Industrial Automation, Beijing Institute of Technology, Zhuhai, China

4. Department of Mechanics, Tianjin University, Tianjin, China

Abstract

Blind deconvolution (BD) has proven to be an effective approach to detecting repetitive transients caused by bearing faults. However, BD suffers from instability issues including excessive sensitivity of kurtosis-guided BD methods to the single impulse and high computational time cost of the eigenvector algorithm-aided BD methods. To address these critical issues, this paper proposed a novel BD method maximizing negative entropy (NE), shortened as maximum negative entropy deconvolution (MNED). MNED utilizes NE instead of kurtosis as the optimization metric and optimizes the filter coefficients through the objective function method. The effectiveness of MNED in enhancing repetitive transients is illustrated through a simulation case and two experimental cases. A quantitative comparison with three existing BD methods demonstrates the advantages of MNED in fault detection and computational efficiency. In addition, the performance of the four methods under different filter lengths and external shocks is compared. MNED exhibits lower sensitivity to random impulse noise than the kurtosis-guided BD methods and higher computational efficiency than the BD methods based on the eigenvalue algorithm. The simulation and experimental results demonstrate that MNED is a robust and cost-effective method for bearing fault diagnosis and condition monitoring.

Funder

China Scholarship Council

State Key Laboratory of Traction Power

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3