Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines

Author:

Kang Fei1ORCID,Liu Xi1ORCID,Li Junjie12

Affiliation:

1. School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, P.R. China

2. School of Engineering, Tibet University, Lhasa, P.R. China

Abstract

Statistical models have been used for dam health monitoring for many years and have achieved some successful applications. In the statistical model, dam structural response is related to external environmental factors such as reservoir water level, temperature, and irreversible time deformation. For concrete dams, the structural response is affected greatly by the ambient temperature. Therefore, in order to establish a more reliable dam health monitoring model, the temperature effect and modeling method should be further studied. This article presents a dam health monitoring model using measured air temperature for temperature effect simulation based on kernel extreme learning machines. The temperature effect is simulated by long-term air temperature data, and the nonlinear relationship is modeled by kernel extreme learning machines, which is an intelligent machine learning technique with high learning speed and good generalization performance. The proposed dam health monitoring model is verified on a real concrete gravity dam with efficient safety monitoring data. Results show that the proposed approach with a variable set recommended for concrete dam behavior prediction is feasible.

Funder

National Key R & D Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3