Processing and structural health monitoring of a composite overwrapped pressure vessel for hydrogen storage

Author:

Rocha Helena12ORCID,Antunes Paulo2,Lafont Ugo3,Nunes João P.1

Affiliation:

1. Institute for Polymers and Composites, University of Minho, Guimarães, Portugal

2. PIEP – Innovation in Polymer Engineering, Guimarães, Portugal

3. European Space Agency, Noordwijk, The Netherlands

Abstract

A process and Structural Health Monitoring system was implemented on a Composite Overwrapped Pressure Vessel (COPV) for hydrogen storage at 350 bar to be used in a fuel-cell system of an Unmanned Aerial Vehicle. This work reports the embedment strategy of optical fibre Bragg grating (FBG) sensors to monitor the full life cycle of the vessel, consisting of an aluminium liner and a wound carbon fibre reinforced polymer composite overwrap. A FBG sensing array, bonded on the aluminium liner circumferential section, was covered with a localised unidirectional prepreg composite tape, enabling composite winding and curing monitoring. The sensing array strategy allowed to detect and locate Barely Visible Impact Damage resulting from drop-weight impact tests, based on the ratio of the residual strain amplitude between FBG sensor pairs. Errors as small as 17 mm and up to 56 mm were determined between the predicted and ‘real’ impact locations. To simulate the real-life operational pressure charging and discharging cycles, the COPV was subjected to cycling testing at different pressure ranges. The FBG sensors were able to monitor a total of 20 980 pressure cycles, revealing a linear response to the applied pressure, and remained operational after COPV failure. Furthermore, the FBG sensing array was able to detect the residual plastic strain caused in the aluminium liner by the autofrettage process that the COPV was subjected to prior to pressure cycling, at 600 bar for 2 min, to improve its fatigue performance. This manuscript also reports the COPV structural design by Finite Element Modelling (FEM), its manufacturing process and burst pressure testing for the FEM analysis validation. A small difference of 0.7% was found between the simulated and experimental determined burst pressure of 1061 ± 26 bar.

Funder

European Union’s Portugal 2020 founding program

European Space Agency

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference25 articles.

1. Current status of automotive fuel cells for sustainable transport

2. Behaviour of Polymers in High Pressure Environments as Applicable to the Hydrogen Infrastructure

3. Jones J. Hydrogen-powered drones take to the skies [Internet]. Enlit World, https://www.enlit.world/hydrogen/hydrogen-powered-drones-take-to-the-skies/ (2022, accessed 24 September 2022).

4. Airbus. ZEROe - Zero emission [Internet], https://www.airbus.com/en/innovation/zero-emission/hydrogen/zeroe (2021, accessed 6 August 2022).

5. Hydrogen production, storage, transportation and key challenges with applications: A review

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3