Damage evaluation and failure mechanism analysis of axially compressed circular concrete-filled steel tubular column via AE monitoring

Author:

Gao Pan1,Liu Jiepeng1,Wang Xuanding1,Jiao Yubo2ORCID,Shan Wenchen3ORCID

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing, China

2. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing, China

3. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China

Abstract

Concrete-filled steel tubular (CFST) columns are frequently used as the main load-bearing components in engineering structures due to their excellent load-bearing capacity. However, the presence of steel tube makes it impossible to accurately detect the damage characteristics of concrete by only relying on traditional mechanical measurement methods. This article quantitatively investigates the concrete damage of circular CFST column during axial compression based on the acoustic emission (AE) technique. Through the cumulative AE parameters including amplitude, count, and energy, the axial compression process of the CFST column can be divided into five main stages (Stage I is divided into two substages) to represent the different damage degree. The damage characteristics of concrete at each stage were explained by combining AE results and mechanical phenomena. A sensitivity analysis of the axial compression process was carried out using the Historic Index ( HI) and Severity ( Sr) and found that the sudden rise in HI and Sr corresponded to the changes in the different loading stages. The Improved b ( Ib) value analysis calculated from the AE amplitudes reflects the evolution mechanism of the crack and can be used for the identification of the final failure moment of the specimen. Finally, a new method for processing and analyzing AE parameters was proposed, which effectively enhanced the dimensionality of real-time monitoring information on the damage of concrete filled in the steel tube.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3