Impact diagnosis in stiffened structural panels using a deep learning approach

Author:

Zargar Sakib Ashraf1ORCID,Yuan Fuh-Gwo1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

Abstract

Low-velocity impact on a structure emanates an elastic wave that propagates through the structure carrying a wealth of information about the impact event. This propagating wave can be visualized through a series of images (time-frames in the context of computer-vision) in the time–space domain collectively referred to as the wavefield. An approach for the autonomous analysis of these wavefields is presented in this article for the purpose of impact diagnosis, that is, identifying the impact location and reconstructing the impact force time-history. The high spatio-temporal dimensionality of the wavefield mandates the use of deep neural networks for analysis; however, unlike the traditional object detection problem in computer-vision, the nature of the impact diagnosis problem requires the capturing of context from the wavefield evolution. This necessitates learning across multiple time-frames of the wavefield simultaneously rather than focusing independently on each frame. While scanning simultaneously across multiple time-frames provides indispensable information about the wave propagation phenomenon in terms of its interactions with geometric features, boundaries, and so on, it mandates the use of deep learning models that can analyze this complex phenomenon in both spatial and temporal domains. A unified CNN-RNN network architecture is employed in this article to address this issue of spatio-temporal information extraction. The proposed approach is verified using simulated wavefields obtained from the finite element analysis of a five-bay stiffened aluminum panel. In order to demonstrate the generalization capabilities of the model, simulated wavefields corresponding to highly idealized impact scenarios are used for training, whereas for testing, the ones corresponding to more realistic impacts are used. It is shown that by incorporating the physics-based concept of time-reversal in the recurrent part of the network, better network performance can be achieved. The potential extension of the proposed methodology to an end-to-end vision-based impact monitoring system is also discussed at the end.

Funder

Langley Research Center

National Institute of Aerospace

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3