Synergistic application of operational modal analysis and ambient noise deconvolution interferometry for structural and damage identification in historic masonry structures: three case studies of Italian architectural heritage

Author:

García-Macías Enrique1ORCID,Kita Alban1,Ubertini Filippo1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy

Abstract

Conservation techniques within the framework of structural health monitoring, particularly through dynamic measurements and operational modal analysis, are becoming popular for condition-based maintenance and decision-making in historic structures. Nonetheless, while effective for giving insight into the overall behaviour of structures, these techniques may fail at detecting local damages with limited effects on the modal features of the system. In this regard, the analysis of propagating waves throughout the structure poses an attractive alternative for data-driven damage identification. Specifically, some encouraging results have been reported on the application of seismic interferometry to reinforced concrete structures, albeit the number of works concerning ambient vibrations is far scarce, and practically nonexistent in the realm of historic structures. In this light, this article explores the synergistic application of operational modal analysis and ambient noise deconvolution interferometry for the structural identification of historic structures through three different case studies, namely the Sciri Tower in Perugia, the Consoli Palace in Gubbio and the bell-tower of the Basilica of San Pietro in Perugia. The first case study represents a typical example of a masonry tower inserted into a building aggregate, while the second one constitutes a particular case of a monumental masonry palace. The presented results and discussion cover diverse aspects of the identification of wave velocities, signal processing strategies, effects of dispersion and robustness of the identification. Finally, the case study of the bell-tower of the Basilica of San Pietro illustrates the application of operational modal analysis and deconvolution interferometry for damage identification. To do so, two different ambient vibration tests conducted before and after the 2016 Central Italy seismic sequence are studied. The results show concentrated reductions in the wave velocities in the area of the belfry, which demonstrates that deconvolution interferometry constitutes a complementary technique to operational modal analysis for damage localization and, to some extent, damage quantification.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3