Stereo-vision-based 3D concrete crack detection using adversarial learning with balanced ensemble discriminator networks

Author:

Shim Seungbo12ORCID,Kim Jin2ORCID,Cho Gye-Chun2,Lee Seong-Won1ORCID

Affiliation:

1. Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, Korea

2. Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

Abstract

The functional performance of concrete structures degrades over time as a result of continuous loads, stress fatigue, and external environmental changes. Thus, periodic diagnoses and inspections are essential because such conditions can eventually lead to disaster. Hence, the detection of cracks in concrete is a key component of structural management. In recent years, deep-learning-based computer vision technologies have emerged as a promising trend and have been actively used for crack detection. Unfortunately, the performance of existing crack detection technologies decreases under environmental conditions that vary widely. To resolve this issue, we propose a new deep neural network that applies an optimal mixing ratio of training data to improve recognition performance alongside an adversarial learning-based balanced ensemble discriminator network. Furthermore, a method to reconstruct the 3-dimensional shape of cracks is proposed using a stereo-vision-based triangulation measurement technique that determines the size of detected cracks. Experimental results show that the proposed algorithm achieved a crack detection performance with a mean intersection-over-union of 84.53% and an F1 score of 82.91%. The proposed inspection technology for concrete structures is expected to be implemented in the future in connection with various automation techniques.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3