Investigation of boundary flexibility on the performance of piezoelectric vibration energy harvesting beam systems by DTFM

Author:

Amoozegar Shahram1,Tan Chin An1ORCID

Affiliation:

1. Department of Mechanical Engineering, Wayne State University, Detroit, MI, USA

Abstract

The purpose of this paper is to investigate the effect of boundary flexibility on the performance of piezoelectric vibration energy harvester (PVEH) beam systems, which has not been studied comprehensively in the literature despite its importance. The coupled electromechanical equations of motion of a piezoelectric cantilever beam with a tip mass are established, with the base boundary constrained by translational and rotational springs. An exact closed-form solution of the frequency response function (FRF) of the PVEH is obtained by the distributed transfer function method (DTFM). The DTFM is a systematic powerful tool for the dynamic analysis of distributed parameter continua with non-classical boundary conditions, intermediate constraints, coupled fields, and non-proportional damping without adding much complexity to the solution formulation. Moreover, the DTFM computes the derivatives of the response, that is, the strains, which are required in the electromechanical coupling formulation, simultaneously without any differentiation. Numerical results showing the effects of boundary flexibility on energy harvesting efficiency are presented. A first-order rational function relating the boundary stiffness parameters and the harvesting efficiency is determined by nonlinear curve fitting of the calculated data. Physical insights and applicability of this analytical function for end-of-line quality check of the boundary of PVEH are discussed.

Funder

wayne state university

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advancements in piezoelectric energy harvesting for implantable medical devices;Journal of Intelligent Material Systems and Structures;2023-10-21

2. Piezoelectric energy harvesting systems using mechanical tuning techniques;Review of Scientific Instruments;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3