Development of wireless bird collision monitoring system using 0-3 piezoelectric composite sensor on wind turbine blades

Author:

Kang Sang-Hyeon1,Kang Lae-Hyong1

Affiliation:

1. Department of Mechatronics Engineering and LANL-CBNU Engineering Institute-Korea, Chonbuk National University, Jeonju-si, Republic of Korea

Abstract

Over the past several decades, wind turbines have been established as one of the promising renewable energy systems for safe and clean energy collection. In order to collect more energy efficiently, the size of wind turbines has been increased and many wind farms have been constructed. Wind farms generate lots of energy, but they cause several side effects, such as noise and a threat to wildlife. It is reported that the bird collision rate of a wind turbine ranges from 0.01 to 23 annually. It is more serious in the case of rare and endangered birds. In order to monitor the effect on birds in wind farms, researchers have developed remote sensing technology for a detection apparatus using heat and radar. In addition, paint color and other variables have been studied regarding their effects on the collision rate. However, the existing methods are passive ways to prevent bird collision or just monitor bird conditions. Therefore, in this study, we propose a bird collision monitoring system that can detect where the bird collision occurred, which will aid in rescuing the birds. If the wind turbine blade has its own ability to capture an impact signal, the impact location can be easily detected, and the birds can be rescued. For this purpose, piezoelectric paint was applied to the wind turbine blades used in this study. The piezoelectric paint is also known as 0-3 piezoelectric composite, which is composed of piezoelectric particles and polymer resin. It is sensitive to high-frequency signals such as impacts, so it is suitable for monitoring bird collision signals. In order to amplify and transmit the impact signal from the rotating blade to a stationary base, a wireless transmission device using a ZigBee module and signal conditioning circuit was also installed. Through lab-scale tests, it was confirmed that this bird collision monitoring system shows a 100% bird collision detection rate.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference14 articles.

1. A Study on Impact Monitoring Using a Piezoelectric Paint Sensor

2. Study on Piezoelectric Characteristics of Piezoelectric Paint Sensor According to Poling Time

3. Long CV (2011) The interaction of bats (Microchiroptera) with wind turbines: Bioacoustic and other investigations. PhD Thesis, Loughborough University, Loughborough.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3