Analysis and modification of a common energy harvesting system using magnetic shape memory alloys

Author:

Sayyaadi Hassan1ORCID,Mehrabi Mohammadmahdi1,Hoviattalab Maryam1

Affiliation:

1. Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran

Abstract

In this paper, a common energy harvester is investigated which uses a specimen of magnetic shape memory alloy (MSMA). The aim of this study is to improve system performance and to evaluate the magneto-mechanical loading on the MSMA material. Since demagnetization effect is not included in the employed original MSMA model, a method to incorporate this effect is proposed which has a good performance for the specific magneto-mechanical loading of this problem. In order to decrease the need for bias magnetic field and increase system efficiency, a new return mechanism for the MSMA specimen is proposed. The results indicate that the maximum harvested power from the improved system is obtained at 0.55 T bias field, with 30% increase in power. Then, input mechanical loading in the system is studied. Firstly, applied strain rate caused by mechanical loading is studied, and a nonlinear relation between the induced RMS voltage and strain rate is observed. Next, 2D applied mechanical loading is investigated, and it is shown that by increasing the phase difference between mechanical loads in two directions, the induced voltage decreases. Moreover, applying dynamic effect to the model shows that for thin MSMA specimens, this effect is minor, but by increasing the thickness and loading frequency, the effect becomes tangible.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3