Affiliation:
1. Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
Abstract
The article focuses on a modeling and subsequent optimization of a novel layered architecture of the vibration piezoceramic energy harvester composed of ZrO2/Al2O3/BaTiO3layers and containing thermal residual stresses. The developed analytical/numerical model allows to determine the complete electromechanical response and the apparent fracture toughness of the multilayer vibration energy harvester, upon consideration of thermal residual stresses and time-harmonic kinematic excitation. The derived model uses the Euler–Bernoulli beam theory, Hamilton’s variational principle, and a classical laminate theory to determine the first natural frequency, steady-state electromechanical response of the beam upon harmonic vibrations, and also the mechanical stresses within particular layers of the harvester. The laminate apparent fracture toughness is computed by means of the weight function approach. A crucial point is the further optimization of the layered architecture from both the electromechanical response and the fracture resistance point of view. Maximal allowable excitation acceleration of the harvester upon which the piezoelectric layer will not fail is determined. It makes possible to better use the harvester’s capabilities in a given application and simultaneously guarantee its safe operation. Outputs of the derived analytical model were validated with finite element method simulations and available experimental results, and a good agreement between all approaches was obtained.
Funder
ESIF, EU Operational Programme Research, Development and Education
Grantová Agentura České Republiky
Subject
Mechanical Engineering,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献