Dynamic analysis of a shape memory alloy beam with pseudoelastic behavior

Author:

Razavilar Reza1ORCID,Fathi Alireza1,Dardel Morteza1ORCID,Arghavani Hadi Jamal2

Affiliation:

1. Faculty of Mechanical Engineering, Babol University of Technology, Babol, Iran

2. Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

This article aims at developing a semi-analytic approach for studying the free and forced vibrations of a pseudoelastically behaving shape memory alloy beam. Based on the Euler–Bernoulli beam theory, equations of motion were derived through Hamilton principle, and the obtained partial differential equations were decomposed by applying the Galerkin approach and were solved using Newmark integration method. A three-dimensional phenomenological model of shape memory alloy, which is capable of identifying the main properties of the shape memory alloy, was employed to model the behavior of the shape memory alloy beam. A closed-form numerical algorithm was introduced to simulate the governing kinetic equations of the shape memory alloy beam coupled with transformation strain. The presented novel solution approach is simple, flexible, and time-saving. Stability analysis was performed using phase state trajectories to show dynamic characteristics of the shape memory alloy beam. Due to hysteric behavior of the shape memory alloy, energy dissipation was clearly observed in early stages of the free vibration and within the transient regions of the forced vibration. The numerical results showed that, due to the hysteric induced damping effect, the vibration amplitude is smaller in comparison to an equivalent elastic beam, and consequently, the shape memory alloy beam exhibits more stable behavior at the resonant frequencies. This property can potentially find applications in energy damping applications and vibration control. Moreover, an interesting phenomenon called jumping was observed in the results of frequency response analysis. At jumping frequency, the amplitude of the frequency response has two distinct levels. This jumping frequency is as a result of the hysteresis behavior of the shape memory alloy, and it is a function of the exciting amplitude.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3