Compliant orthoses for repositioning of knee joint based on super-elasticity of shape memory alloys

Author:

Sadeghian Farshid1,Zakerzadeh Mohammad Reza1ORCID,Karimpour Morad1,Baghani Mostafa1ORCID

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

People suffering from neuromuscular diseases may also face certain abnormalities in their walking pattern. Patients with quadriceps muscle weakness suffer from flexion contracture as well as flexion instability during the gait cycle. In this article, a knee-ankle-foot orthosis design is proposed with two different mechanisms for the stance and swing phases, addressing the needs of patients with quadriceps muscle weakness. The stance phase mechanism locks the knee joint movement from the initial contact until the end of mid-swing and after mid-stance phase, the knee joint can flex freely. OpenSim was utilized to simulate patients with muscle weakness as well as calculating the required moment to mimic the stiffness of a normal knee joint. The super-elasticity of shape memory alloys was then used to reproduce the calculated moment for different levels of muscle weakness. It is shown that by designing patient-specific orthosis, the stiffness profile of normal joint for each patient with distinct level of muscle weakness can be reproduced.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3