Thermomechanical modeling and experimental investigation of transformation-induced creep and stress relaxation in shape memory alloy wires

Author:

Zare Fateme1,Jannesari Mohammad1,Kadkhodaei Mahmoud1,Mosaddegh Peiman1

Affiliation:

1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Creep and relaxation phenomena are being observed in shape memory alloys, not only at high temperatures but also at room temperature, due to their martensitic transformation. Transformation-induced creep and stress relaxation in shape memory alloys occur due to temperature variations during loading and unloading cycles. In this work, a one-dimensional fully coupled thermomechanical model was employed to develop a continuum framework for studying these behaviors in shape memory alloy wires. A decrease or increase in stress was observed during forward or reverse transformation at a constant amount of strain, showing the stress relaxation and stress recovery, respectively. Similarly, the model predicts that strain increases or decreases when stress is held fixed in the course of forward or reverse transformation, meaning the phenomena of creep and creep recovery, respectively. This model provides the ability of investigating the effects of different ambient temperatures, strain rates, applied stresses and strains, and wire radii on the creep and relaxation responses of shape memory alloys. Relaxation and creep experiments at different ambient temperatures and loading or unloading rates were also done on NiTi wires, and the theoretical predictions were shown to be in a good agreement with the empirical observations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3