Analysis of beams with piezo-patches by node-dependent kinematic finite element method models

Author:

Carrera Erasmo1,Zappino Enrico1,Li Guohong1

Affiliation:

1. MUL2 Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy

Abstract

This article presents a family of one-dimensional finite element method models with node-dependent kinematics for the analysis of beam structures with piezo-patches. The models proposed are built by applying Carrera unified formulation. Carrera unified formulation permits to obtain finite element method stiffness matrices through so-called fundamental nuclei whose form is independent of the assumptions made for the displacement/electrical field over the cross section of a beam. In the previous works, uniform kinematic assumptions have been applied to all the nodes within the same element. The present contribution proposes to use different kinematics on different nodes, leading to node-dependent kinematic finite element method formulations. In such an approach, non-uniform cross sections introduced by piezo-patches can be considered. With the help of layer-wise models, piezoelectric and mechanical domains each can possess individual constitutive relations. Meanwhile, node-dependent kinematics can integrate equivalent single layer models and layer-wise models to reach an optimal balance between accuracy and use of computational resources. Static governing equations for beam elements with node-dependent kinematics accounting for electromechanical effects are derived from the principle of virtual displacements. The competence of the proposed approach is validated by comparing the obtained results with solutions taken from the literature and ABAQUS three-dimensional modelling. Both extension and shear actuation mechanisms are considered.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3