An experimental study on mechanical properties of a magnetorheological fluid under slow compression

Author:

Wang Hongyun1ORCID,Bi Cheng1,Ji Axiang1,Liu Xu1,Qu Bo1,Zhang Guang23

Affiliation:

1. School of Intelligent Manufacture, Taizhou University, Taizhou, PR China

2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, PR China

3. XGM Corporation Limited, Taizhou, PR China

Abstract

Mechanical properties of magnetorheological (MR) fluids have been investigated in slow compression under different magnetic fields. The compressive stress of the MR fluid has been deduced by assuming that it was a continuous shear flow in Bingham model and has been calculated. The compressive stress has also measured in different magnetic fields and initial gap distances. The compressive stress of the MR fluid in a high magnetic flux density and/or a small initial gap distance was much higher than that predicted by the traditional continuous media theory. Compressive experimental results were also compared with the continuous media theory by a normalized logarithmic form. The achieved experimental result seems to deviate from the prediction by the continuous media theory at a high magnetic flux density and a small initial gap distance. The MR fluid had a high compressive modulus when the compressive strain was lower than 0.042. The compressive modulus had an exponential relationship with the compressive strain higher than 0.042. Frictions between particles, which contribute to the high structure factor, were thought to play an important role in the large deviations in squeeze mode.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3