Actuation of a carbon/epoxy beam using shape memory alloy wires

Author:

Damansabz Reza1,Taheri-Behrooz Fathollah1ORCID

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

Shape memory effect of NiTi wires is utilized to design various smart composite structures. In these systems, smart wires can induce strains in the host structure by their inherent shape memory effect and phase transformation at elevated temperatures. This article presents an experimental and numerical study on the actuation capability of shape memory alloy wires embedded in the carbon/epoxy composite. In the experimental part, hybrid shape memory alloy/carbon/epoxy composite specimens are fabricated and examined to measure induced strains in the host structure by the phase transformation of the shape memory alloy wires. Hybrid composite specimens were clamped at one end, and the shape memory alloy wires were activated using electrical resistive heating. Numerical simulations were carried out using ABAQUS software to simulate the actual thermomechanical behavior of the hybrid composite specimens. A three-dimensional finite element model based on cohesive zone modeling is used to predict interfacial debonding in hybrid composite plates. The results of the parametric study suggest that by increasing Young’s modulus of the host composites, the amount of the induced strain decreases rapidly. However, for Young’s moduli more than 20 GPa, the induced strain will stay almost constant. Moreover, it was confirmed that increasing the shape memory alloy pre-strain without controlling the actuation temperature may result in the reduction of induced strain in the host composites.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3