Monito-Ring: An original fiber optic system for morphing application

Author:

Ciminello Monica1,Bettini Paolo2,Ameduri Salvatore1,Guerreschi Erika2,Concilio Antonio1,Sala Giuseppe2

Affiliation:

1. Smart Structures Lab, Italian Aerospace Research Center (CIRA), Capua, Italy

2. Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Milano, Italy

Abstract

An original Monito-Ring system based on chirped fiber optic and draw tower grating array is presented. The target of this research activity is the realization of a device able to measure deformations of morphing structures which may show large, global displacements due to nonstandard architectures and materials adopted. The occurring strain field results, in turns, much more than the standard sensors can handle. Modulations are then necessary to keep the measured strain low. The proposed solution was conceived to overcome this limitation assuring a suitable reduction of the revealed strain. The concept is made of a flexible ring pinned on a certain number of points to the structural component of interest. The fiber optic is integrated within the ring, and depending on the angular position of the sensor, the ratio between the diameter elongation (i.e. structural strain) and the measured deformation (strain) can be almost arbitrarily set in a large range of values. From each spectrum provided by draw tower grating array, the corresponding unknown strain field is retrieved by applying an inverse technique obtaining an accurate continuous strain map. This article deals with a proof of concept analytical study first and then numerical and experimental validation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3