Impact behavior of a novel magnetorheological energy absorber based on wedge-shaped squeeze flow model

Author:

Li Zhuqiang1ORCID,Fu Benyuan2,Liao Changrong3ORCID

Affiliation:

1. Chongqing Key Laboratory of Manufacturing Equipment Mechanism Design and Control, Chongqing Technology and Business University, Chongqing, China

2. College of Mechanical Engineering, Chongqing University of Technology, Chongqing, China

3. Key Laboratory of Optoelectronic Technology & Systems (Chongqing University) of Ministry of Education, Chongqing, China

Abstract

Magnetorheological (MR) energy absorbers (MREAs) have been extensively investigated as a means of dissipating impact energy and decreasing injury as well as used in a wide range of applications. When applied as an accidental collision buffer, however, problems can arise owing to the inertia of the sudden impact. In this study, a novel MREA with a gradient resistance gap structure working in a wedge-shaped squeeze flow model of a high-viscosity linear polysiloxane-based MR fluid was developed. The MREA has a continuously changing working gap and internal magnetic flux density gradient distribution representing a wedge-shaped structure. A Power-Law model inclusive of fluid minor losses (PLM)- of the damping force of an MREA with a wedge-shaped resistance gap was built to study the impact behavior. A second model also considered the effects of inertia (PLMI). The wedge angle was defined to quantitatively and comprehensively characterize the effects of the wedge-shaped resistance gap because of its significant influence on the dynamic characteristics. Two MREAs with wedge-shaped and equidistant working gaps were fabricated and tested using a drop tower facility with a mass of 600 kg. The experimental results show that the maximum damping force of the MREA with a wedge-shaped resistance working gap reached to as high as 235.8 kN and the dynamic range is increased by 6.5% compared to that with an equidistant working gap. The relative errors of the peak force for impact velocities between 2.8 and 4.2 m s−1 with no applied current were 1.84%–3.67% (PLM) and 0.63%–1.91% (PLMI), and with 3 A applied current were 2.35%–4.99% (PLM), and 1.24%–2.72% (PLMI), demonstrating that the PLMI-based model is capable of accurately predicting the dynamic behavior of the MREA.

Funder

Natural Science Foundation of Chongqing Municipality

the Scientific Research Project of Chongqing Technology and Business University

the National Natural Science Foundation of China

the Opening Project of Scientific Research Platform of Chongqing Technology and Business University

the Science and Technology Research Program of the Chongqing Municipal Education Commission

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3