Affiliation:
1. Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi, India
Abstract
Flexible links are often part of massive aerospace structures like helicopter or wind turbine blades, satellite bae, airplane wings, and space stations. In the present work, a mixed variational statement based on intrinsic variables is derived for multilinked smart slender structures. Equations involved in the derivation do not involve approximations of kinematical variables to describe the deformation of the reference line or the rotation of the deformed cross-section of the slender links resulting in a geometrically exact formulation. Finite element equations are derived from weak formulation, which can analyze large geometrically non-linear problems. The weakest possible variational statement provides greater flexibility in the choice of shape functions, therefore reducing the associated numerical complexities. The present work focuses on developing a single integrated computational platform which can study multibody, multilink, lightweight composite, structural system built with both embedded actuations, sensing, as well as passive links. Validation of static mechanical and electrical outputs from 3D FE simulation and literature proves the efficacy of the computational platform. Dynamic results will be communicated in future correspondence. The computational platform developed here can be applied for monitoring and active control applications of flexible smart multilink structures like swept wings, multi-bae space structures, and helicopter blades.
Funder
council for scientific and industrial research, south africa
Subject
Mechanical Engineering,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献