Affiliation:
1. China Agricultural University, Beijing, China
2. Purdue University, West Lafayette, IN, USA
Abstract
In many dynamic systems, such as vehicles, engine air and fuel control systems, fluid power systems, industrial robotics, and testing machines, high-speed actuators are necessary to achieve efficient system operation and high bandwidth performance. This article introduces a new actuation mechanism to enable high-speed actuation. The premise for this actuation mechanism is to momentarily couple a moving component (kinetic energy source) with translational components, which is enabled by a coupling/clutch system. The kinetic energy source (flywheel, electric motor, pump or motor shaft, etc.) is intermittently clutched and declutched to produce linear motion. This article presents such an energy coupler actuator using a magneto-rheological fluid clutch, initially focused on an application for high-speed valve actuation. A multi-physics coupled model was developed to evaluate the proposed energy coupler actuator performance. Simulations were conducted to optimize the energy coupler actuator design parameters. A prototype of the magneto-rheological fluid energy coupler actuator based on the optimal design solution was fabricated and experimentally tested, which achieved 1.6-mm stroke in 4.7 ms.
Funder
National Science Foundation
Subject
Mechanical Engineering,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献