4D printed origami-inspired accordion, Kresling and Yoshimura tubes

Author:

Wickeler Anastasia L1,McLellan Kyra1,Sun Yu-Chen1,Naguib Hani E.123ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada

2. Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada

3. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada

Abstract

Applying tessellated origami patterns to the design of mechanical materials can enhance properties such as strength-to-weight ratio and impact absorption ability. Another advantage is the predictability of the deformation mechanics since origami materials typically deform through the folding and unfolding of their creases. This work focuses on creating 4D printed flexible tubular origami based on three different origami patterns: the accordion, the Kresling and the Yoshimura origami patterns, fabricated with a flexible polylactic acid (PLA) filament with heat-activated shape memory effect. The shape memory characteristics of the self-unfolding structures were then harnessed at 60°C, 75°C and 90°C. Due to differences in the folding patterns of each origami design, significant differences in behaviour were observed during shape programming and actuation. Among the three patterns, the accordion proved to be the most effective for actuation as the overall structure can be compressed following the folding crease lines. In comparison, the Kresling pattern exhibited cracking at crease locations during deformation, while the Yoshimura pattern buckled and did not fold as expected at the crease lines. To demonstrate a potential application, an accordion-patterned origami 4D printed tube for use in hand rehabilitation devices was designed and tested as a proof-of-concept prototype incorporating self-unfolding origami.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference45 articles.

1. Flexible mechanical metamaterials

2. Bouguet J-Y (2015) Camera calibration toolbox for Matlab. Available at: http://www.vision.caltech.edu/bouguetj/calib_doc/ (accessed 19 October 2021).

3. Elastic theory of origami-based metamaterials

4. Implementation of an Upper-Limb Exoskeleton Robot Driven by Pneumatic Muscle Actuators for Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3