Three-dimensional formulation of a strain-based geometrically nonlinear piezoelectric beam for energy harvesting

Author:

Beltramo Emmanuel1ORCID,Balachandran Balakumar2,Preidikman Sergio1

Affiliation:

1. Institute for Advanced Studies in Engineering and Technology (IDIT) UNC-CONICET and Department of Structures, F.C.E.F. y N., National University of Córdoba, Córdoba, Argentina

2. Department of Mechanical Engineering, University of Maryland at College Park, College Park, MD, USA

Abstract

In this paper, the authors introduce a model of a strain-based geometrically nonlinear piezoelectric beam for modeling energy harvesters. A nonlinear shear-underfomable 3-D Rayleigh’s beam theory is used to model the displacement fields and can be considered as an interesting alternative to linear and highly nonlinear models commonly presented in the literature. The nonlinearities are introduced to reproduce the behavior of the flexible structure, since moderate to large displacements can occur in response of external loading conditions. The finite element method is used to model the piezolaminated bimorph configuration. Each finite element consists of two piezoelectric energy harvesters embedded or perfectly bonded to an elastic substrate. The electromechanical coupling includes axial and flexural effects as well as additional term that comes from the nonlinearity incorporated into the strain tensor. Additionally, the authors explore briefly two topics for linear harvesters: the influence of the electric domain on the structural properties and, the performance of the harvester near resonance in term of electric power output of a purely resistive network. As a validation case, a cantilevered piezoelectric energy harvester under base excitation is modeled. Alongside, the response to gust of a harvester embedded in a wing structure is analyzed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3