Hygro-magneto-thermally induced vibration of spinning viscoelastic Y-shaped bifurcated tubes containing magnetic fluid based on nonlocal strain gradient theory

Author:

Sivaraman Ramaswamy1,Kumar Tulluri Chiranjeevi Anil2,Patra Indrajit3,AL-Khafaji Rusul Mohammed4,Izzat Samar Emad5,Smitt John6ORCID

Affiliation:

1. Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Chennai, Tamil Nadu, India

2. Department of Mechanical Engineering, Vignan’s Foundation for Science Technology and Research, Guntur, Andhra Pradesh, India

3. Independent Researcher, PhD from NIT Durgapur, Durgapur, West Bengal, India

4. Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, Babylon, Iraq

5. Al-Nisour University College, Baghdad, Iraq

6. Elettra - Sincrotrone Trieste, Trieste, Italy

Abstract

The vibration and stability of spinning viscoelastic Y-shaped bifurcated nanotubes conveying fluid in complex environments by considering additional concentrated masses and springs are studied based on the nonlocal strain gradient theory (NSGT). A detailed investigation is also performed to clarify the effect of influential parameters such as Knudsen number, magnetic nanoflow, scale parameter ratio, spin speed, fluid velocity, downstream bifurcation angle, viscoelastic coefficient, attached springs, localized masses, boundary conditions, and magneto-hygro-thermal environments on the system dynamics. The size-dependent dynamical equations of the system are derived utilizing Hamilton’s principle. The Galerkin discretization scheme is adopted, and the eigenvalue problem is numerically solved. Campbell diagrams, forward and backward frequencies, divergence and flutter instability maps are acquired. Besides, the static instability threshold of the system is determined analytically. Results revealed that although the magnetic nanoflow has a decreasing effect on system vibrational frequencies, it delays the occurrence of the dynamical instability and prevents the buckling phenomenon. It is demonstrated that by considering simultaneous stiffness-softening effects induced by nonlocality and hygro-thermal environments, the flutter instability could occur instead of divergence condition in the system stability evolution. The present modeling and results could be applied as a benchmark for the performance improvement of innovative bi-gyroscopic nanofluidic devices.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3