Experiments on resonant vibration suppression of a piezoelectric flexible clamped–clamped plate using filtered-U least mean square algorithm

Author:

Ma Biao1,Qiu Zhi-cheng12,Zhang Xian-min1,Han Jian-da2

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, P.R. China

2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, P.R. China

Abstract

This article investigates the adaptive filtered-U least mean square feed-forward algorithm for active resonant vibration control of a clamped–clamped flexible piezoelectric plate structure under persistent harmonic excitation. Different from the widely used filtered-X least mean square algorithm based on the finite impulse response filter, the filtered-U least mean square algorithm uses the infinite impulse response filter. An infinite impulse response filter can be constituted simply by using two adaptive transversal filters. The filtered-U least mean square algorithm can model the system accurately with much fewer coefficients. Moreover, the filtered-U least mean square algorithm has better control performance and stability in the presence of vibration control feedback, owing to the inherent zero-pole structure of the infinite impulse response filter. In this investigation, the filtered-U least mean square algorithm is implemented only in experiments. Two experimental cases are carried out, including the reference signal extracted from the function signal generator and the lead zirconate titanate sensor. A proportional–derivative feedback control algorithm is also applied as a comparison. The experimental results demonstrate the feasibility and performance of the designed proportional–derivative controller and filtered-U least mean square controller.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3