A Hermite interpolation element-free Galerkin method for piezoelectric materials

Author:

Ma Xiao1,Zhou Bo1ORCID,Xue Shifeng1

Affiliation:

1. College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, China

Abstract

Piezoelectric materials have played an important role in industry due to a number of beneficial properties. However, most numerical methods for the piezoelectric materials need mesh, in which the mesh generation and remeshing are prominent difficulties. This paper proposes a Hermite interpolation element-free Galerkin method (HIEFGM) for piezoelectric materials, where the Hermite approximate approach and interpolation element-free Galerkin method (IEFGM) are combined. Based on the constitutive equation, geometric equation, and Galerkin integral weak form, the HIEFGM formulation for piezoelectric materials is established. In the proposed method, the problem domain is discretized by many nodes rather than the meshes, so the pre-processing of numerical computation is simplified. Furthermore, a new approximation technique based on the moving least squares method and Hermite approximate approach is used to derive the approximation function of field quantities. The derived approximation function has the Kronecker delta property and considers the field quantity normal derivatives of boundary nodes, which avoids the problem of imposing the essential boundary conditions and improves the accuracy of meshless approximation. The effects of the scaling factor, node density, and node arrangement on the accuracy of the proposed method are investigated. Numerical examples are given for assessing the proposed method and the results uniformly demonstrate the proposed method has excellent performance in analyzing piezoelectric materials.

Funder

Graduate Innovation Program of China University of Petroleum

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3