Affiliation:
1. Department of Mechanical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI, USA
Abstract
Percutaneous needle-based intervention is a technique used in minimally invasive surgical procedures such as brachytherapy, thermal ablation, and biopsy. Targeting accuracy in these procedures is a defining factor for success. Active needle steering introduces the potential to increase the targeting accuracy in such procedures to improve the clinical outcome. In this work, a novel 3D steerable active flexible needle with shape memory alloy actuators was developed. Active needle actuation response to a variety of actuation scenarios was analyzed to develop a kinematic model. Shape memory alloy actuators were characterized in terms of their actuation strain, electrical resistance, and required electrical power to design a self-sensing electrical resistance feedback control system for position tracking control of the active needle. The control system performance was initially tested in position tracking control of a single shape memory alloy actuator and then was implemented on multiple interacting shape memory alloy actuators to manipulate the 3D steerable active needle along a reference path. The electrical resistance feedback control of the multiple interacting shape memory alloy actuators enabled the active needle to reach target points in a planar workspace of about 20 mm. Results demonstrated shape memory alloys as promising alternatives for traditional actuators used in surgical instruments with enhanced design, characterization, and control capabilities.
Funder
Hawaii Community Foundation
Subject
Mechanical Engineering,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献