Adjustment of the scan track spacing and linear input energy to fabricate dense, pseudoelastic Nitinol shape memory alloy parts by selective laser melting

Author:

Zamani Mohammadreza1,Kadkhodaei Mahmoud1ORCID,Badrossamay Mohsen1,Foroozmehr Ehsan1

Affiliation:

1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Nitinol is a well-known shape memory alloy (SMA) which is widely used due to its unique properties such as shape memory effect and pseudoelasticity. However, challenges fabricating Nitinol parts have limited the use of this alloy. Nowadays, additive manufacturing methods, specifically selective laser melting (SLM), are being used as an alternative to conventional methods for fabricating Nitinol specimens. Achieving a dense structure and controlling the transformation temperatures in such products have been among the most important challenges for several research groups. In the present study, fabrication of dense Nitinol parts by SLM together with control of their transformation temperatures is investigated with the main purpose of achieving pseudoelastic products at room temperature. For this purpose, the effect of process parameters on density, transformation temperatures, microstructure, hardness, and shape memory response are studied. The influence of process parameters on transformation temperatures varies depending on the amount of power so that the effect of scan tracks spacing for high powers is more pronounced than that for low powers. The hardness and compressive strength of the parts are also affected by the process parameters. Accordingly, optimal parameters are found to fabricate dense pseudoelastic parts with the ability of strain recovery at ambient temperature.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3