Microscale magnetoelectricity: Effect of particles geometry, distribution, and volume fraction

Author:

Newacheck Scott1,Youssef George1ORCID

Affiliation:

1. Experimental Mechanics Laboratory, Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA

Abstract

Achieving efficient magnetoelectric coupling of core-shell and particulate multiferroic composites has been a challenging hurdle; however, research has shown unwavering interest to overcome this barrier in pursuit of their implementation into promising potential applications. Herein, a fully coupled computational model of core-shell and particulate composites is developed and verified to investigate the magnetoelectric interactions of the particle and matrix on the microscale. The effects of particle geometry, settling, and agglomeration were exhaustively studied by investigating seven different shapes and a wide range of vertical and lateral particle spacing. Overall, it was found that utilizing particle geometries and positioning that closely resemble a laminate configuration, such as a prolate ellipsoid and horizontal particle alignment, enhances the magnetoelectric coupling of the composite structure. The results coincided with the experimental results concerning settling and agglomeration.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3