Characterisation of anti-resonance in two-degree-of-freedom electromagnetic kinetic energy harvester, with modified electromagnetic model

Author:

O’Riordan Eoghan1ORCID,Frizzell Ronan2,O’Connell Diarmuid2,Blokhina Elena1

Affiliation:

1. University College Dublin, Dublin, Ireland

2. Nokia Bell Labs, Dublin, Ireland

Abstract

This article presents a detailed approach to the analysis of a two-degree-of-freedom electromagnetic kinetic energy harvester. These systems use multiple disconnected masses that can impact each other and the harvester housing. This causes complex dynamics in the system as significant momentum is transferred between the masses and, ultimately, results in strongly nonlinear behaviour. One particular nonlinear phenomenon of interest, which has not been previously characterised, is anti-resonance. Observing this phenomenon is important as it highlights efficient energy transfer between the masses, and maximising its effect can be used to enhance the harvesters’ overall performance. A range of mathematical techniques are used to better explain the concept of anti-resonance and how it can be used to improve the understanding of the system dynamics. In addition, the widely used model for electromagnetic transduction is amended to give a more precise representation of the transducer force for this embodiment of the kinetic energy harvester. This unique analysis yields a rich modelling approach that can be used to inform future kinetic energy harvester designs by identifying and optimising key design parameters. Comparisons are made with experimental measurements of a two-mass electromagnetic kinetic energy harvester, validating the modelling approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3