Time-harmonic loading over a piezoelectric layered half-space

Author:

Nirwal Sonal1ORCID,Lin Chih-Ping12,Tran Quoc Kinh1,Pan Ernian12

Affiliation:

1. Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

2. Disaster Prevention and Water Environment Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

Abstract

Mathematical modeling of multilayered piezoelectric (PE) ceramic substantially acquires attention due to its distinctive advantages of fast response time, positioning, optical systems, vibration feedback, and sensors, such as deformation and vibration control. As such, fundamental solution of a PE structure is essential. This paper presents three-dimensional (3D) static and dynamic solutions (i.e. Green’s functions) in a multilayered transversally isotropic (TI) PE layered half-space. The uniform vertical mechanical load, vertical electrical displacement, and horizontal mechanical load are applied on the surface of the structure. The novel Fourier-Bessel series (FBS) system of vector functions (which is computationally more powerful and streamlined) and the dual-variable and position (DVP) method are employed to solve the related boundary-value problem. Two systems of first-order ordinary differential equations (i.e. the LM- and N-types) are obtained in terms of the FBS system of vector functions, with these expansion coefficients being the Love numbers. A recursive relation for the expansion coefficients is established by using DVP method that facilitates the combination of two neighboring layers into a new one and minimizes the computational effort to a great extent. The corresponding physical-domain solutions are acquired by applying the appropriate boundary/interface conditions. Several numerical examples pertaining to static and dynamic response are solved, and the efficiency and accuracy of the proposed solutions are validated with the existing results for the reduced cases. The solutions provided could be beneficial to better developments of PE materials, configurations, fabrication, and applications in the future.

Funder

National Science and Technology Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3