Dielectric elastomer–based energy harvesting: Material, generator design, and optimization

Author:

Graf Christian1,Hitzbleck Julia2,Feller Torsten2,Clauberg Karin2,Wagner Joachim2,Krause Jens2,Maas Juergen1

Affiliation:

1. Control Engineering and Mechatronic Systems, Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany

2. Bayer Material Science AG, EAP Research LEV, BMS-CAS-FF-R&D-EAP, Leverkusen, Germany

Abstract

Electroactive polymers are soft capacitors made of thin elastic and electrically insulating films coated with compliant electrodes offering a large amount of deformation. They can either be used as actuators by applying an electric charge or used as energy converters based on the electrostatic principle. These unique properties enable the industrial development of highly efficient and environmentally sustainable energy converters, which opens up the possibility to further exploit large renewable and inexhaustible energy sources like wind and water that are widely unused otherwise. Compared to other electroactive polymer materials, polyurethanes have certain advantages over silicones and acrylates. Due to the inherently higher permittivity as well as the higher dielectric breakdown strength, the overall specific energy, a measure for the energy gain, is better by at least factor of 10, that is, more than 10 times the energy can be gained out of the same amount of material. In order to reduce conduction losses on the electrode during charging and discharging, a highly conductive bidirectional stretchable electrode has been developed. Other important material parameters like stiffness and bulk resistivity have been optimized to fit the requirements. We also report on different measures to evaluate and improve electroactive polymer materials for energy harvesting by, for example, reducing the defect occurrence and improving the electrode behavior.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3