Bio-inspired aquatic propulsion using piezoelectric effect

Author:

Bhamra Navinder Singh1,Vijayan Kiran1ORCID,Nagarajan Vishwanath1

Affiliation:

1. Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Abstract

Underwater propulsion of fishes have inspired many biomimetic structures. Generally, the bio-inspired structures mimics the flapping behaviour of various control surfaces/fins in fishes. The present study mimics the flapping behaviour using a piezoelectric structure. The system is analyzed as a fluid structure interaction problem. The dynamic behaviour of a cantilever beam surrounded by a bounded fluid domain open at top is analyzed. The structure is modeled as a Euler-Bernoulli beam and the fluid is modeled using potential flow theory. The influence of domain size on the wet natural frequencies of the system was analyzed. The dimensions of the fluid domain wherein the variation in wet natural frequencies becomes insensitive were determined. The influence of added mass on the wet natural frequency was parametrized based on Non-dimensional Added Mass Increment (NAVMI) factor. The NAVMI factors were observed to be relatively higher for lower wet modes of the structure. Therefore, the peizo-beam was analyzed by exciting the lower wet modes. The thrust generated at different excitation frequencies were determined using tip velocity of the cantilever beam following Lighthill’s analogy. The results from the study indicated that higher propulsive thrust was produced for lower modes of excitation of the structure.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3