Influence of a delamination on Lamb wave excitation by a nearby piezoelectric transducer

Author:

Shpak Alisa N1ORCID,Golub Mikhail V1ORCID,Mueller Inka2,Eremin Artem1,Kathol Jens3,Fritzen Claus-Peter3

Affiliation:

1. Institute for Mathematics, Mechanics and Informatics, Kuban State University, Krasnodar, Russian Federation

2. Department of Mechatronics and Mechanical Engineering, Bochum University of Applied Sciences, Bochum, Germany

3. Department of Mechanical Engineering and Center of Sensor Systems (ZESS), University of Siegen, Siegen, Germany

Abstract

This article presents the results of theoretical and experimental investigations of characteristic changes of Lamb wave excitation and scattering by a strip-like horizontal delamination in a layered elastic waveguide for Lamb waves induced by a piezoelectric wafer active sensor. The boundary integral equation method is used to describe wave propagation in an infinite layered waveguide with a delamination, while the frequency domain spectral element method is employed to model the dynamic behaviour of the piezoelectric wafer active sensor, which allows to simulate debonding between the piezoelectric wafer active sensor and the waveguide. Experimental investigations of the dynamic interaction of the piezoelectric wafer active sensor with a layered plate containing a horizontal delamination is conducted for several damage scenarios, showing a good agreement with the results obtained using the developed mathematical model. The obtained mathematical model is employed to analyse alteration of the piezo-induced Lamb waves including modes’ decomposition due to delamination. The conversion and/or conservation of the Lamb waves on account of a delamination is investigated. The electro-mechanical impedance of the piezoelectric transducer and the stress intensity factors of a delamination are analysed in dependence on the delamination location.

Funder

Russian Foundation for Basic Research

Deutsche Forschungsgemeinschaft

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3