Affiliation:
1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
2. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China
Abstract
Due to the characteristics of smart material magnetorheological (MR) fluid, such as short response time and large controllable range, semi-active suspension based on MR fluid has been widely used. In order to improve the steering stability of vehicles, a semi-active suspension with tapered flow mode MR was proposed. The magnetic circuit of the proposed structure was designed, its dynamic model was established, and the finite element simulation analysis was carried out. By establishing the optimization objectives and constraints, the MR damper was optimized by NSGA-II and MOST algorithms. The vehicle dynamics model with MR damper was established, and the vehicle dynamics simulation was carried out under the control system based on the vehicle dynamics simulation software CarSim-Simulink before and after optimization. The results show that the NSGA-II optimized MR damper can reduce vehicle roll and significantly improve vehicle handling stability. This paper provides a new idea for improving vehicle handling stability by optimizing the MR damper.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献