Affiliation:
1. Interdisciplinary Institute for Technological Innovation (3IT), Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Canada
Abstract
Magnetorheological clutches have great potential for demanding applications such as powertrains and aircraft primary flight controls. However, in such high-power applications (>1 kW), durability is a challenge because of the continuous slippage at the clutch shear interface. To improve durability, this research studies the potential of using a magnetic screw pump to promote fluid mixing within a magnetorheological clutch. The screw flights are made of magnetorheological fluid formed by the concentration of the magnetic field lines around helical grooves machined into the shear interface (drum) of the clutch. While the magnetic pump does not display a typical screw pump behavior, a semi-empirical yield screw pump model is proposed to better understand the macroscopic behavior. Experimental flow characterization results show that the pressure–flow relation is significantly affected by the number of grooves, magnetic field intensity, and rotational speed. For a clutch containing 50 mL of magnetorheological fluid, maximum flow rates of up to 25 mL/min and a maximum pressure of 150 kPa are achieved. Finally, durability test results show that the magnetic screw pump can increase durability by up to 42% when compared to a standard magnetorheological clutch, confirming that such a device is a viable solution for promoting durability.
Funder
Gastops
Natural Sciences and Engineering Research Council of Canada
Bell Flight
Consortium de recherche et d’innovation en aérospatiale au Québec
Subject
Mechanical Engineering,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献