Guided waves in a functionally graded 1-D hexagonal quasi-crystal plate with piezoelectric effect

Author:

Zhang Bo1,Yu Jiangong1,Zhou Hongmei1ORCID,Zhang Xiaoming1ORCID,Elmaimouni Lahoucine2

Affiliation:

1. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, P.R. China

2. LSIE-ERMAM, Faculte Polydisciplinaire d’Ouarzazate, Univ. Ibn Zohr, Ouarzazate, Morocco

Abstract

For the purpose of design and optimization for piezoelectric quasi-crystal transducers, guided waves in a functionally graded 1-D hexagonal piezoelectric quasi-crystal plate are investigated. In this paper, a model combined with the Bak’s and elastohydrodynamic models is utilized to derive governing equations of wave motion, and real, pure imaginary, and complex roots of governing equations are calculated by using the modified Legendre polynomial method. Subsequently, dispersion curves and displacements of phonon and phason modes are illustrated. Then, guided waves in functionally graded 1-D hexagonal piezoelectric quasi-crystal plates with different quasi-periodic directions are studied. And the phonon-phason coupling effect on Lamb and SH waves are analyzed. Accordingly, some interesting results are obtained: The phonon-phason coupling just affects Lamb waves in the x- and z-direction quasi-crystal plates, and SH waves in the y-direction quasi-crystal plate. Besides, frequencies of propagative phason modes decrease as phonon-phason coupling coefficients Ri increase. Furthermore, a variation in the polarization has a more significant influence on phonon modes, and a variation in the quasi-periodic direction has a more significant influence on phason modes.

Funder

Education Department of Henan Province

Henan Polytechnic University

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3