Dynamic analysis of a functionally graded piezoelectric energy harvester under magnetic interaction

Author:

Derayatifar Mahdi1ORCID,Sedaghati Ramin2ORCID,Chandramohan Sujatha3,Packirisamy Muthukumaran1,Bhat Rama2

Affiliation:

1. Optical BioMicrosystems Laboratory, Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada

2. Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada

3. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

Abstract

The aim of this embodiment is to present an analytical analysis of a functionally graded piezoelectric energy harvester consisting of a flexible functionally graded piezoelectric layers carrying magnetic mass at the free end. The magnetic tip mass is in interaction with a permanent magnet which is located at a distance from the top of the tip mass. The oscillation of the harvester happens via excitation of the base. Using Rayleigh’s beam theory and Hamilton’s principle and considering geometric nonlinearity, the coupled electromechanical governing equations have been developed. The nonlinear frequency response of the piezoelectric energy harvester beam has also been studied under base excitation. A parametric study has been carried out to investigate the effect of grading index and magnetic force on responses of both free vibration and induced excitation cases. The results were compared with those obtained using three-dimensional finite element model developed in COMSOL Multiphysics 5.5 commercial software and good agreement has been observed. The results from both the analytical method and simulation confirm that tuning the design parameters of grading index and magnetic gap to the optimal value results in a considerable change in the performance of the energy harvester.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3