Nonlinear dynamic behaviors and PID control of viscoelastic dielectric elastomer balloons

Author:

Xing Zhencai12,Yong Huadong12ORCID

Affiliation:

1. Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education of China, Lanzhou University, Lanzhou, Gansu, PR China

2. Department of Mechanics and Engineering Sciences, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu, PR China

Abstract

As a type of intelligent electroactive polymer, dielectric elastomer (DE) exhibits viscoelastic properties. It’s worth pointing out that the relaxation time has great significance for studying the mechanical behavior of viscoelastic polymer. In this paper, a generalized Maxwell model is used to describe the viscoelastic property of dielectric elastomer balloon. Meanwhile, a theoretical model with multiple relaxation times is used and the natural frequency of small amplitude oscillation is derived. Subsequently, the model is validated by comparing with experimental results. The model with double relaxation times can describe the deformation of the dielectric elastomer balloon effectively. Then the effect of relaxation time and shear modulus on the dynamic response of DE balloon is studied. Furthermore, the dielectric elastomer balloons in practical application exhibit the strong nonlinearity and the viscoelastic dissipation. Therefore, it is important to precisely control the dynamic response. The proportional-integral-differential (PID) controller in the form of nonlinear combination is adopted to control the above nonlinear dynamic systems actively. The results indicate that it is feasible to achieve desired control effect.

Funder

higher education discipline innovation project

national natural science foundation of china

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3