Analytical study of thermal buckling and post-buckling behavior of composite beams reinforced with SMA by Reddy Bickford theory

Author:

Fani Mahshad1,Taheri-Behrooz Fathollah1ORCID

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

Shape memory alloys are used in composite structures due to their shape memory effect and phase transformation. The recovery force of the shape memory alloy improves the post-buckling behavior of the structure. In this study, the thermal buckling and post-buckling of Shape Memory Alloy (SMA) hybrid composite laminated beam subjected to uniform temperature distribution is investigated. To this purpose, considering Von-Karman non-linear strain terms for large deformation, the non-linear equations of SMA reinforced beam based on Reddy Bickford theory have been derived. Besides, the recovery stress of the restrained SMA wires during martensitic transformation was calculated based on the one-dimensional constitutive law of the Brinson’s model. A numerical solution using Galerkin’s method has been presented for solving the nonlinear partial differential equations to obtain the critical buckling temperature and transverse deformation of the beam in the post-buckling region in both symmetric and anti-symmetric layups. The effect of SMA volume fraction, pre-strain, the boundary condition of the beam, stacking sequence, and its geometric properties have been studied. The results show that even by adding a small amount of SMA to the composite, the critical buckling temperature increases significantly, and the beam deflection decreases. Besides, using this theory has an evident effect on the anti-symmetric layup, especially for the thick beams.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3