Electromechanical modeling and analysis of a piezocomposite multi-point loaded beam vibration energy harvester

Author:

Sharghi Hesam1,Bilgen Onur1ORCID

Affiliation:

1. Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, NJ, USA

Abstract

In this paper, vibration energy harvesting from a piezocomposite beam with unconventional boundary conditions is investigated. The beam in consideration has multi-point constraints and consequently has concentrated multi-point loading along its length. It is shown that the natural frequencies, strain uniformity along the beam, and strain node positions can be adjusted by shifting the support locations, allowing for a significant range of mechanical tuning. To model the electromechanical system, the Euler-Bernoulli beam assumptions are adopted, and by Hamilton’s principle and Gauss’ law, the governing equations are derived. Frequency response functions of the output voltage and beam transverse displacement are solved for harmonic base excitation, and the maximum output power is calculated both numerically and analytically. A set of experimental results are used to validate the model. A detailed parametric analysis is conducted by varying tunable system parameters such as resistive load, tip mass, and the intermediate support location. All interesting operational conditions of the system, and the corresponding tuning parameters are quantified. It is shown that the multi-point loaded beam concept can produce higher strain-normalized-output-power when compared to a cantilevered or a simply supported beam.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fiber-Based Piezocomposite Devices with Multiple Polarization Regions;2023 IEEE 22nd International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS);2023-12-11

2. Continuous electric field modeling of Macro-Fiber Composites for actuation and energy harvesting;International Journal of Mechanical Sciences;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3