A dynamic loading system for high-speed motorized spindle with magnetorheological fluid

Author:

Tian Shengli1ORCID,Chen Xiaoan1ORCID,He Ye1ORCID,Chen Tianchi1ORCID,Li Peiming1

Affiliation:

1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, China

Abstract

A high-speed dynamic loading test is a key step when testing the dynamic performance and running quality of a high-speed motorized spindle. A loading test is very difficult to perform at high speeds. Based on the rheological behavior of the magnetorheological fluid, a novel high-speed dynamic loading system for a high-speed motorized spindle was designed, fabricated, and tested. The working principles and structure of this loading system are described. The torque model of the loader was derived based on the Herschel–Bulkley model and electromagnetic simulation using the finite element method. In addition, the torque–current relationship under different speeds was analyzed by experiments, and we found non-linear relationships between the viscosity and shear stress of the magnetorheological fluid with the shear rate. The Herschel–Bulkley model was corrected by fitting for the experimental results. The loading torque, calculated by the modified model, complied with the experimental results. This lays the foundation for the design of a high-speed transmission device based on the magnetorheological shear principle. Experiments of torque stability, temperature stability, and reusability verified the feasibility and accuracy of the proposed loading system. It provides a novel method to test the dynamic loading performance of high-speed motorized spindles.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3