Colloidal, electrorheological, and viscoelastic properties of polypyrrole-graft-chitosan biodegradable copolymer

Author:

Cabuk Mehmet1,Yavuz Mustafa1,Unal Halil Ibrahim2

Affiliation:

1. Department of Chemistry, Faculty of Science, Süleyman Demirel University, Isparta, Turkey

2. Smart Materials Research Laboratory, Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey

Abstract

In this study, colloidal, electrorheological, and viscoelastic properties of conducting polypyrrole, biodegradable chitosan, and polypyrrole- graft-chitosan copolymer were investigated. Some physical properties such as particle size, apparent density, conductivity, magnetic susceptibility, and elemental analysis of the materials were determined. Electrokinetic properties of the materials were investigated by means of zeta (ζ)-potential measurements in aqueous and non-aqueous (silicone oil) media. The effects of time, pH, various electrolytes, surfactants, and temperature onto ζ-potentials of the dispersions prepared in aqueous media were examined. It was concluded that the positive ζ-potential of polypyrrole shifted to more positive regions, and the isoelectric point of the polypyrrole concomitantly shifted to higher pH values after interaction with polycationic chitosan matrix. Polypyrrole- graft-chitosan/silicone oil suspensions were observed to be electrorheological active when subjected to external electric field strength. Creep and creep–recovery tests were applied to the suspensions and a relationship was established between viscoelastic response and ζ-potential of the materials. Furthermore, polypyrrole- graft-chitosan-based smart electrorheological fluid was observed to behave as a viscoelastic material and exhibited a reversible nonlinear viscoelastic deformation under externally applied electric field strength.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3