A survey of control strategies for simultaneous vibration suppression and energy harvesting via piezoceramics

Author:

Wang Ya1,Inman Daniel J2

Affiliation:

1. Department of Mechanical Engineering, Center for Intelligent Material Systems and Structures, Virginia Tech, Blacksburg, VA, USA

2. Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI, USA

Abstract

This article presents a summary of passive, semipassive, semiactive, and active control methods for schemes using harvested energy as the main source of energy to suppress vibrations via piezoelectric materials. This concept grew out of the fact that energy dissipation effects resulting from energy harvesting can cause structural damping. First, the existing equivalent electromechanical modeling methods are reviewed for vibration-based energy harvesters using piezoelectric transducers. Modeling of base excitation cantilever beam ranges from lumped to distributed parameter formulations. The commonly used electrical power conditioning circuits and their optimization are also summarized and discussed. The energy dissipation from harvesting induces structural damping, and this leads to the concept of purely passive shunt damping. This article reviews the literature on vibration control laws along the lines of purely passive, semipassive, semiactive, and active control. The classification of pervious results is built on whether external power is supplied to the piezoelectric transducers. The focus is placed on recent articles investigating semipassive and semiactive control strategies derived from synchronized switching damping. However, whether or not the harvested energy is large enough to satisfy a vibration suppression requirement has become an important topic of research but has not yet specifically been addressed in previous studies. Hence, this survey also reviews the possible control methods aiming for less control energy consumption and addresses the potential application for simultaneous vibration control and energy harvesting.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3