Quantifying the Local Kinematic Effect in Actuated Plates via Strain Energy Distribution

Author:

Robbins D.H.1,Chopra Inderjit2

Affiliation:

1. Alfred Gessow Rotocraft Center, Department of Aerospace Engineering University of Maryland, College Park, MD 20742, USA, don.robbins@ gmail.com

2. Alfred Gessow Rotocraft Center, Department of Aerospace Engineering University of Maryland, College Park, MD 20742, USA

Abstract

This article examines the distribution of strain energy in the various component materials of actuated plates and investigates the manner in which the strain energy distribution is influenced by the actuated span-to-thickness ratio and the thickness of the adhesive bond layer. Furthermore, the article investigates the effect of modeling choices (e.g., kinematic assumptions and mesh density) on the predicted magnitude and mode of the dominant strain energy form in each component material. These computed parameters can be used to quantify the overall efficiency of an actuated plate in addition to aiding the understanding of the local mechanics that govern the process. The focus problem consists of a square aluminum plate with a single symmetric pair of surface-mounted piezoceramic actuators that are used to produce in-plane extension or bending in the aluminum plate. The behavior of the actuated plate is examined over a range of plate thicknesses and adhesive bond layer thicknesses by using a series of finite element models that feature different levels of kinematic complexity and different levels of two-dimensional (2-D) mesh density. The results of the study emphasize the need for discrete layer kinematics in determining the magnitude and mode of the dominant strain energy form in each constituent material; however, these computed parameters are shown to be rather insensitive to changes in 2-D mesh density. Most importantly, the study confirms the existence and quantifies the magnitude of the local kinematic effect, whereby a portion of the available actuation energy is diverted to the production of localized transverse shear deformation and transverse normal deformation, thus reducing the amount of actuation energy available to produce in-plane deformation in the structural substrate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Reference17 articles.

1. Chattopadhyay, A., Li, J. and Gu, H. 1999. ``Coupled Thermo-piezoelectric-mechanical Model for Smart Composite Laminate,'' AIAA Journal, 37(12):1633—1638.

2. Review of State of Art of Smart Structures and Integrated Systems

3. A review and critique of theories for piezoelectric laminates

4. Coupled discrete-layer finite elements for laminated piezoelectric platess

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coupling of hierarchical piezoelectric plate finite elements via Arlequin method;Journal of Intelligent Material Systems and Structures;2012-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3