Improving the Damping Properties of Composites Using Ferroelectric Inclusions

Author:

Asmatulu R.1,Claus R. O.2,Mecham J. B.3,Inman D. J.4

Affiliation:

1. Fiber & Electro-Optics Research Center, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA

2. Fiber & Electro-Optics Research Center, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA and NanoSonic Inc., 1485 South Main Street, Blacksburg, VA 24060, USA

3. NanoSonic Inc., 1485 South Main Street, Blacksburg, VA 24060, USA

4. Center for Intelligent Material Systems and Structures, Virginia Tech, Blacksburg, VA 24061, USA

Abstract

This paper presents a recently developed composite constructed in an attempt to improve damping properties by using ferroelectric inclusions in a constrained medium. Several samples of this new composite have been made and tests of their damping properties are presented here. Damping properties of materials are of great interest in many applications. The focus here is on the development of composites with ferroelastic components to develop a new class of materials having improved temperature-dependent damping properties. Typical damping materials, such as viscoelastic materials, have damping values that decrease with increasing temperature. The work presented here considers a material system consisting of fine particles of vanadium dioxide (VO2) and zinc oxide (ZnO) incorporated into matrix materials (tin and polymer adhesives) to produce composite materials with improved damping properties. A number of mechanical damping tests have been conducted on the prepared composites at a frequency range of 0-2000 Hz and over a broad temperature range using piezoceramic exciters and miniature accelerometers. The mechanical vibration test results show that VO2 and ZnO give significantly higher damping values at ≈68° C (155° F) and 29° C (85° F). For example, ≈15 and 12% damping is achieved at the first and second resonance frequencies, respectively. This significant improvement on the damping of the composite materials may be because of the ferroelasticity and/or viscoelasticity at those particular temperatures. It has also been observed that etching of substrate surfaces improves the adhesion between composite materials and surfaces for better damping results. These composites offer high damping at elevated temperatures and hence may provide useful solutions to applications requiring increased damping.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3