Homogenized energy model for characterizing polarization and strains in hysteretic ferroelectric materials: Material properties and uniaxial model development

Author:

Smith Ralph C1,Hu Zhengzheng1

Affiliation:

1. Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, USA

Abstract

Ferroelectric materials, such as lead zirconate titanate, lanthanum-doped lead zirconate titanate, and BaTiO3, are being considered, or are already being employed, for a large number of applications including nanopositioning, high-speed valves for fuel injectors, ultrasonic transducers, high-speed camera shutters and autofocusing mechanisms, energy harvesting, and pico air vehicle design. Their advantages include nanometer positioning resolution, broadband frequency responses, moderate power requirements, the capability for miniaturization, and complementary actuator and sensor capabilities. However, they also exhibit creep, rate-dependent hysteresis, and constitutive nonlinearities at essentially all drive levels due to their noncentrosymmetric nature. In this article, we model the hysteretic dependence of strains and polarizations on input fields and stresses using the homogenized energy model framework. At the domain level, the minimization of the Gibbs energy densities yields linear constitutive relations. Nonlinearities and hysteresis due to dipole switching are modeled at the grain level using the Boltzmann theory to specify the evolution of dipole fractions that serve as internal variables. In the final step of the development, stochastic homogenization, based on the assumption that interaction fields and driving forces are manifestations of underlying densities, is used to construct nonlinear constitutive relations for the bulk material. It is demonstrated that these relations are amenable to subsequent development of distributed system models. The article includes significant discussion regarding the mechanisms that produce hysteresis in ferroelectric materials. The capability of the framework for characterizing various hysteretic phenomena, including creep and various rate dependencies, is illustrated by validation with lead zirconate titanate and lanthanum-doped lead zirconate titanate data.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ferroelectric polycrystals: Structural and microstructural levers for property-engineering via domain-wall dynamics;Progress in Materials Science;2023-07

2. Parameter-dependent surrogate model development for PZT bimorph actuators employed for micro-air vehicles;Behavior and Mechanics of Multifunctional Materials XIII;2019-03-29

3. Enhancement of hard disk drive manipulator using piezoelectric actuator mechanisms;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2018-10-11

4. Analysis of a multi-axial quantum-informed ferroelectric continuum model: Part 2—sensitivity analysis;Journal of Intelligent Material Systems and Structures;2018-07-10

5. Uncertainty quantification for PZT bimorph actuators;Behavior and Mechanics of Multifunctional Materials and Composites XII;2018-03-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3